

COLLEGE OF ENGINEERING

**Aerospace &
Mechanical Engineering****AEROSPACE ENGINEERING GRADUATE STUDIES***The sky is no limit*

Perform research in a unique combination of wind tunnels ranging from low speed to hypersonic, or Mach 5.

HYPersonic CAPABILITIES

Faculty expertise in computations, experiments and theory related to hypersonic flight.

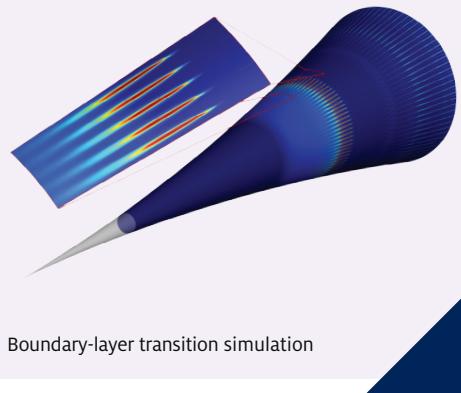
RESEARCH FOCUS AREAS

- Dynamics and Control
- Fluid Dynamics
- Solid Mechanics
- Thermosciences

DEGREES

- PhD Aerospace Engineering
- MS Aerospace Engineering
- Accelerated Master's Program (AMP)

PROGRAM RANKING


27

aerospace engineering
graduate programs
(U.S. News & World Report 2022)

“ This is a great opportunity for students to get hands on experience building a spacecraft and running a space mission. Everyone is so involved and gets to see every step of the way. ”

- Tanner Campbell, PhD student

Boundary-layer transition simulation

FUNDING OPTIONS THROUGHOUT DEGREE LIFECYCLE

APPLICATION DEADLINES

- Fall: January 1
- Spring: June 1

CONTACTS

Samy Missoum, Associate Head of Graduate Studies
smissoum@arizona.edu

Stephanie Amado, Coordinator, Graduate Programs
samado@arizona.edu

COLLEGE OF ENGINEERING

Aerospace & Mechanical Engineering

“ Having these researchers, pillars in their fields, under the same roof gives our department an edge in being able to bridge gaps in knowledge and best prepare our faculty and students to solve problems. ”

- Alex Craig, assistant professor

Faculty Expertise

Majid Beidaghi – beidaghi@arizona.edu

discovery and synthesis of advanced functional materials • energy storage materials and devices (batteries and supercapacitors) • synthesis and characterization of MXenes and other 2D materials • advanced manufacturing of energy storage devices, sensors, and membranes

Eric A. Butcher – ebutcher@arizona.edu

spacecraft GNC • astrodynamics • nonlinear dynamics, vibration and control • stability, control and estimation in periodic, delayed and fractional systems

Cho Lik Chan – cholik@arizona.edu

heat transfer • materials processing • boundary elements methods

Stuart A. Craig – sacraig@arizona.edu

aerodynamics • stability and laminar turbulent transition of supersonic and hypersonic boundary layers • experimental fluid mechanics • hydrodynamic stability

Eniko T. Enikov – enikov@arizona.edu

dynamics of charged particles and macro-ions • control of processes driven by electrostatic forces • neural-network-based self-learning methods for control of human-machine interfaces

Hermann Fasel – faselh@arizona.edu

computational fluid dynamics • hydrodynamic stability • laminar turbulent transition • turbulent flows • hypersonic flows • flow control • nonlinear dynamics • aerodynamics • UAVs • flight experiments • autonomous flight

David Hahn – dwhahn@arizona.edu

thermal sciences • laser-based diagnostics • renewable energy • combustion • biophotonics • laser-material interactions • plasma-material interactions

Qing Hao – qinghao@arizona.edu

heat transport inside lithium-ion batteries • high-power electronics • thermal insulation materials • thermoelectrics • measurement and applications of graphene and other two-dimensional materials

Jeffrey W. Jacobs – jwjacobs@arizona.edu

experimental fluid dynamics • hydrodynamic instabilities, including Richtmyer Meshkov and Rayleigh-Taylor instabilities • turbulent mixing

Daniel Larsson – dlarsson@arizona.edu

autonomy • decision-making under uncertainty • path-planning • information-limited control • information-theoretic abstraction • representations for autonomous systems • artificial intelligence • optimization, inference and estimation

Peiwen 'Perry' Li – peiwen@arizona.edu

renewable energy • heat mass transfer in gas turbines and HVACR systems • electrolyzers • energy-water nexus • fuel cells • hydrogen storage and generation • energy and power systems

Erdogan Madenci – madenci@arizona.edu

prediction of deformation and failure modes in metallic and composite materials • characterization of mechanical properties of materials

Farzad Mashayek – mashayek@arizona.edu

turbulent reacting flow • plasma flow • electrostatic atomization • solid ion batteries • computational methods • machine learning applications

Samy Missoum – smissoum@arizona.edu

design optimization • probabilistic design, reliability and risk assessment • vibrations • advanced finite element modeling

Bernard Parent – bparent@arizona.edu

reactive flows • re-entry flows • plasma-assisted combustion • plasma-based fuel reforming • plasma aerodynamics • computational fluid dynamics • scramjets • lightning

Hossein Rastgoftar – hrastgoftar@arizona.edu

decision-making under uncertainty • human-robotic interaction • swarm robotics • system autonomy • UAS traffic management • intelligent transportation • formal specification and verification • finite-state abstraction of dynamical systems

Sergey Shkarayev – svs@arizona.edu

aerodynamics • fluid-structure interactions • unmanned aerial vehicles

Jekan Thanga – jekan@arizona.edu

space robotics • CubeSats and sensor-networks • machine learning applied to dynamics and control of swarms • small satellite propulsion • autonomous systems • power and thermal systems

Xiaoyi Wu – xwu@arizona.edu

tissue engineering • biomechanics • biomaterials and computational biomaterials

Israel Wygnanski – wygy@arizona.edu

aerodynamics related to fixed-wing and rotary aircraft • control of separation • high-lift devices • drag reduction • aeroacoustics, particularly jet noise, cavity noise and screech

Vitaliy Yurkiv – vyurkiv@arizona.edu

multi-physics modeling and machine learning calculation of energy storage and conversion technologies • ab-initio density functional theory calculations • phase-field modeling • thermal measurements of rechargeable batteries • thermal runaway assessment in electric vehicles

Olesya Zhupanska – oiz@arizona.edu

micromechanics of composites • structural composites in extreme environments • low velocity impact of composites • PDE-constrained optimization with applications to mechanics • contact mechanics

Yitshak Zohar – zohar@arizona.edu

biomicrofluidics and microscale manipulation of biospecies, such as proteins, cells and tissues in microfluid systems